
Chapter 7

[165]

As we saw earlier, we cannot avoid changes, and for large applications the domain
model may become increasingly fine-grained and complex. Modifying such code
to accommodate changes can become very complex, so the need was felt to have a
solution that can help us take advantage of the domain model but manage changes
in the long run without spending too much time and effort, and help keep our
applications flexible and open for future modifications.

Service Orientation
Before understanding the term service orientation, let us consider a fictional
scenario—Mr. Bhalla owns a small Marketing and Sales company with a few
employees. Bhalla realized that his business and clients were growing quickly,
and he was unable to handle all of the phone calls and paper work on his own.
So he decided to hire an assistant who could do the basic office work, and handle
paperwork and other office-related tasks for him. After some interviews he decided
to select Ms. Akriti Katoch for the job. Mr. Bhalla was initially a bit skeptical as to
whether Akriti could handle the work, so he decided to train her for some time. He
told her that she simply needs to follow his instructions carefully. For example, to
get a particular file, he would give her details of the file name, file color and the rack
where it could be found. Similarly for each task set out to her, he would give her all
of the details, so that she could work more efficiently.

For some time, everything went well. But after a while, Mr. Bhalla realized that
giving Akriti all of the details was getting cumbersome. For example, if he had to
study the files for his client Newport Inc, he would ask Akriti to "get the first 10 of the
blue files on the 5th rack, shelf number 3". And if, after going through those 10 files, Mr.
Bhalla could not find the required information and wanted to see the other files for
the same client, he would call Akriti and ask her to "get the next 5 blue files on the 5th
rack, shelf number 3". This was a waste of time for both Bhalla and Akriti. But as Akriti
started gaining experience, he decided to give "less" information to her, and let her
do most of the job herself. So he would give her brief instructions, and instead of "get
me the first 10 of the blue files on the 5th rack, shelf number 3", he would just say "give me
all the files for Newport Inc". He realized that this method was more efficient, and once
all of files were on his desk, he could find the relevant information himself.

Basically, Bhalla moved from a fine-grained model to a coarse-grained one;
towards a more "message" based system instead of a method-calling system
(give me "this" based on "this, this and this" parameters). This coarse-grained
model and message-based system is basically the essence of service orientation.

SOA and WCF

[166]

Service orientation means that the application's business logic is wrapped up and
presented as a service to an outside client. This service is complete in itself. It doesn't
need complex object relationships or Component Oriented Middleware (COM)-like
middleware to render itself to its consumers. With the advent of web services, SOA
architecture has become extremely easy to implement.

Service orientation was born out of this need for better change management, process
alignment, and improved efficiency in automating complex and changing business
rules. Object orientation focuses more on breaking the business model into an object
model and interaction between different business objects according to business rules.
It focuses more on how to best implement a particular business model as a domain
model in an application.

As OOAD evolved, it became more and more involved with the actual
implementation part of the architecture. But with time, the need for better
integration and faster response time for business software was felt. It was hard for
a new application to communicate with the existing legacy systems (old software),
and cross-platform integration became complex and time consuming. A need for
an easier solution, that is, an architecture that would solve these problems from
a business point of view, and is also easy to implement, was felt. Thus, Service
Oriented Architecture was born.

SOA helps businesses to manage changes in their applications better and faster
and get a higher Return On Investments (ROI) by promoting the re-use of different
application components.

Let us look at the following diagram, which depicts the usual communication
between different components in an object-based software system:

External Clients

Product Object

Order Object

Customer
Object

DATABASE

.

